

Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE

Dr. vet. med. Dr. sc. agr. Henrike Seibel

Blaue Biotechnologie für eine grüne Zukunft - Unsere Beiträge aus der Aquakulturforschung

Prof. Dr. Carsten Schulz Direktor

Dr. Dr. Henrike Seibel Abteilungsleitung

Fischernährung

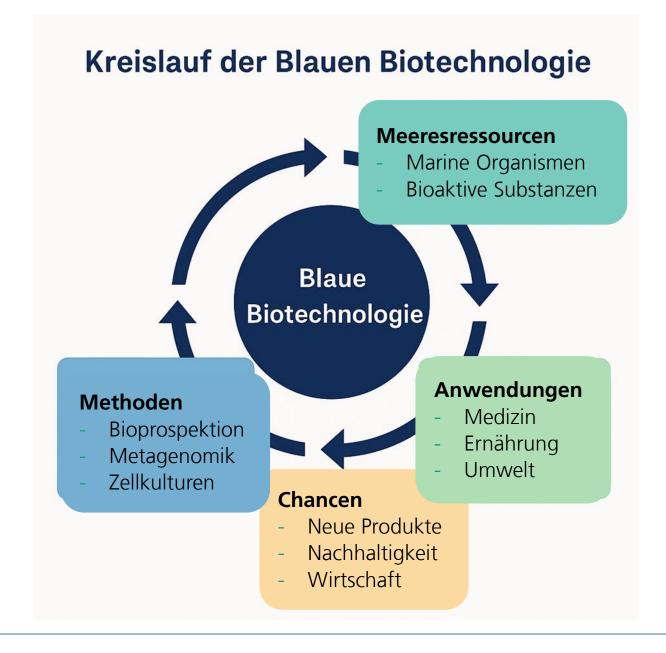
Dr. Frederik Kaiser

Fischgesundheit und - welfare

Michael Schlachter

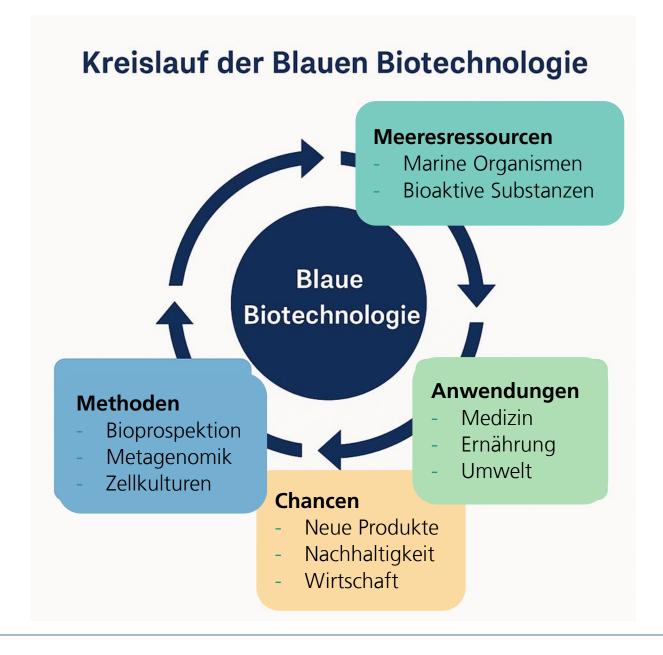
Dr. Dr. Henrike Seibel

Experimentelle Aquakultur und Kreislaufanlagentechnik


Dr. Johann Torno

Was ist blaue Biotechnologie?

Blaue Biotechnologie nutzt marine
Organismen (Bakterien, Algen, Schwämme,
Fische etc.) für Anwendungen in Medizin,
Umwelt, Industrie und Ernährung



Was ist blaue Biotechnologie

Blaue Biotechnologie nutzt marine
Organismen (Bakterien, Algen, Schwämme,
Fische etc.) für Anwendungen in Medizin,
Umwelt, Industrie und Ernährung

Wirtschaftliche und ökologische Nutzung der Meereswelt

Schatztruhe Meer

Warum ist das Meer so interessant?

Über 70 % der Erdoberfläche sind von Wasser bedeckt.

Über 95 % der Meeresbiodiversität sind noch unerforscht.

Extreme Lebensbedingungen (Druck, Salz, Dunkelheit) →

Einzigartige Enzyme und Wirkstoffe

Erstellt mit Dall-E 3, FhGenie von Henrike Seibel

Erstellt mit Dall-E 3, FhGenie von Henrike Seibel

Herausforderungen

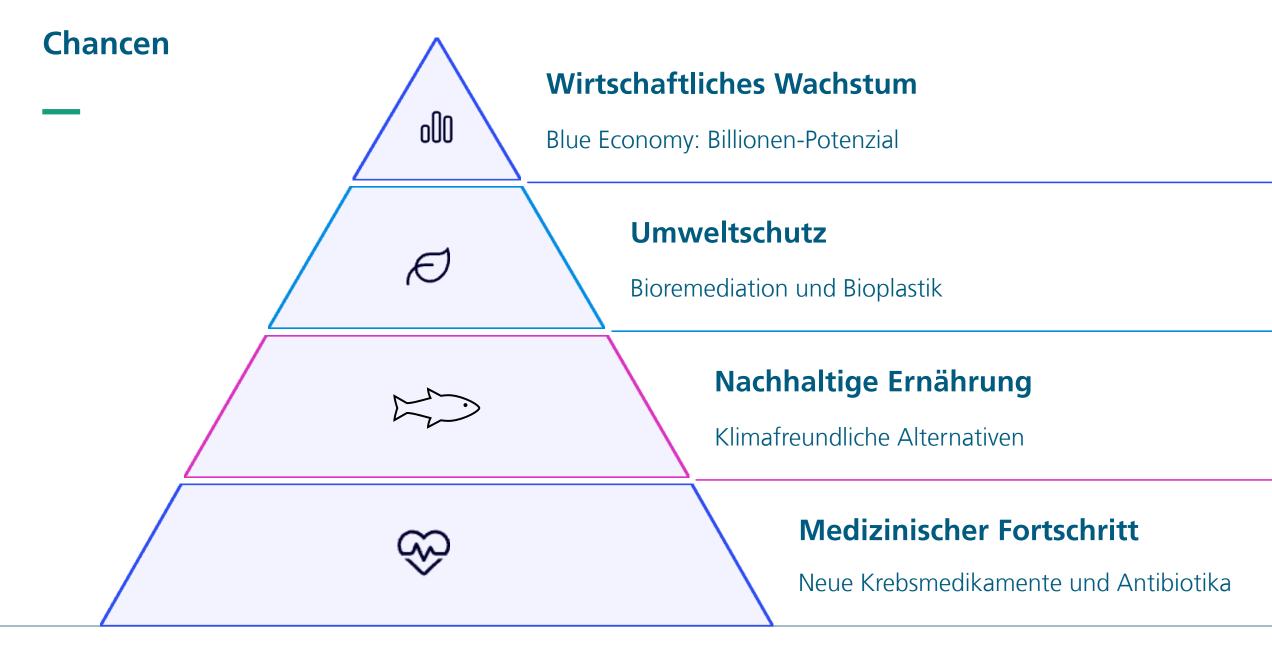
Technische Hürden

Tiefsee-Erkundung erfordert Spezialausrüstung

Biodiversitätsschutz

Gefahr der Übernutzung sensibler Ökosysteme

Rechtliche Unsicherheiten


Ungeklärte Nutzung in internationalen Gewässern

Ethische Fragen

Gerechte Verteilung von Entdeckungen

Praxisbeispiele

Umsetzung in der Aquakultur des IMTE

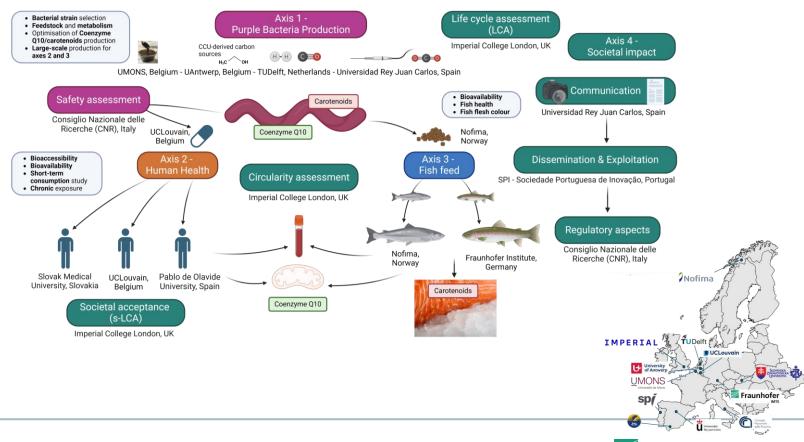
Blaue Biotechnologie kann ...

... zur Entwicklung neuer Arten von Fischfutter verwendet werden.

... durch die Nutzung von Meerestieren und -pflanzen zur Entwicklung neuer Medikamente und Behandlungen von Krankheiten bei Fischen und Menschen beitragen.

... zur Verbesserung der Aquakulturtechnologie beitragen (z.B. Algenproduktion).

Purple4Life


Innovative, nachhaltige und zirkuläre Produktion von purpurnen phototrophen Bakterien als gesundheitsfördernde Zutat für Lebensmittel- und Futtermittelanwendungen

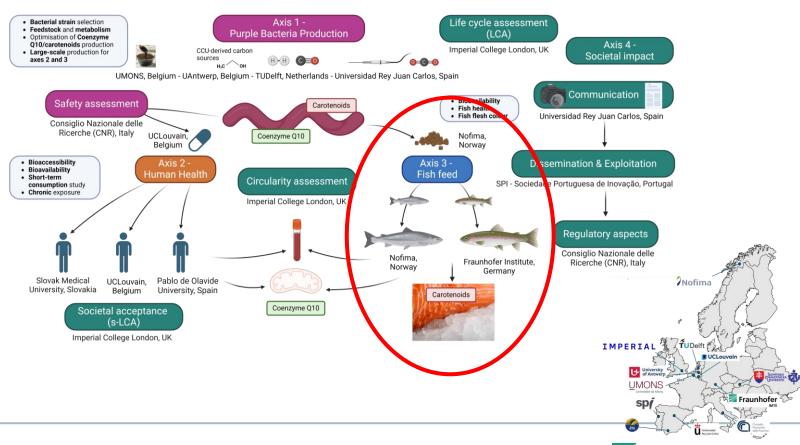
EU – Circular Bio-based Europe Joint Undertaking (Horizon - CBE JU)

Projektinhalte:

- Identifikation gesundheitsförderlicher Stoffe aus Purpurbakterien für die Human- und Tierernährung
- Demonstration der Eignung von Purpurbakterien für die Lebensmittelund Futterproduktion

Purple4Life

Innovative, nachhaltige und zirkuläre Produktion von purpurnen phototrophen Bakterien als gesundheitsfördernde Zutat für Lebensmittel- und Futtermittelanwendungen


EU – Circular Bio-based Europe Joint Undertaking (Horizon - CBE JU)

Projektinhalte:

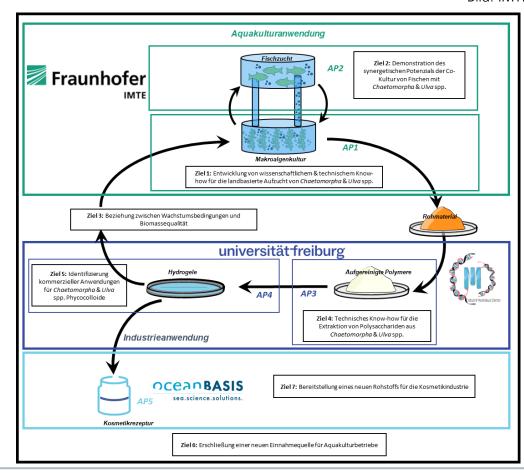
- Identifikation gesundheitsförderlicher Stoffe aus Purpurbakterien für die Human- und Tierernährung
- Demonstration der Eignung von Purpurbakterien für die Lebensmittelund Futterproduktion

Projektziel bei Fraunhofer:

- Nutzung von Purpurbakterien als funktionelle Futterkomponente / Futtermittelzusatzstoff
- Ermittlung von idealen Einsatzmengen in der Forellenernährung

Greengold

Co-Kultivierungssysteme und Veredelungsverfahren für grüne Makroalgen zur Produktion nachhaltiger Biomaterialien


Bild: IMTE

Projektinhalte:

- Entwicklung nachhaltiger Kultivierungssysteme für grüne Makroalgen
- Nutzung von nährstoffreichem Abwasser aus Fischzuchtanlagen zur Algenzucht (Co-Kultivierung)
- Extraktion und Charakterisierung gelierender Polysaccharide (Ulvan, Chaetomorpha-PS)
- Anwendung der extrahierten Polysaccharide in Naturkosmetik
- Schaffung neuer Wertschöpfungsketten für Aquakulturbetriebe
- Reduktion der Importabhängigkeit bei kosmetischen Rohstoffen

Projektziel bei Fraunhofer:

- Aufbau und Optimierung von Kultivierungssystemen
- Nutzung von Reststoffen aus Aquakultur

Marine Mikroalgen und Ackersteinsamenöl als nachhaltige Quellen zur Optimierung des Omega-3-Fettsäuregehaltes von Fisch als funktionelles Lebensmittel zur Prävention kardiovaskulärer Erkrankungen beim Menschen

Verbundprojekt zwischen Tierzucht und Tierhaltung der CAU / IMTE und dem Institut für Humanernährung und Lebensmittelkunde der Christian-Albrechts-Universität zu Kiel (CAU)

Projektinhalte:

- Fisch senkt artherogene Blutfette und ist wichtig in der Prävention von Herzkreislsauferkrankungen beim Menschen
- Vermehrter Ersatz von Fischöl durch bisherige pflanzliche Alternativen verringert Gehalt an den gesundheitsfördernden Fettsäuren Eicosapenten- (EPA) und Docosohexaensäure (DHA) im Fisch
- Ackersteinsamenöl und marine Mikroalgen (Isocryisis) zur Steigerung der EPA- und DHA-Gehalte in Fisch
- Randomisierte, verblindete Humanstudie

Im Meer liegt ein Schatz – nicht nur an Fischen, sondern an Ideen für die Medizin, Industrie und den Klimaschutz der Zukunft.

Fazit zur blauen Biotechnologie

- Revolutionäre Möglichkeiten für Gesundheit, Ernährung, Umwelt
- Schlüsseltechnologie für nachhaltige Zukunft
- Verantwortungsvoller Umgang mit Meeresressourcen essenziell

Verknüpfung zu anderen Biotechnologien

Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE

Kontakt

Dr. med. vet., Dr. sc. agr. Henrike Seibel Aquakultur und Aquatische Ressourcen Arbeitsgruppe Gesundheit von Fischen und -welfare Tel. +49 4834 96539915

Henrike.Seibel@imte.fraunhofer.de

Hafentörn 3 25761 Büsum www.fraunhofer.de

